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ABSTRACT
Too often researchers rely upon the classical normal

theory' parametric tests to analyze non- normal data, even, though the
tests may not be robust to violations of that assumption. Fligner's
class of two-sample tests".for scale-is an important development
'because the test is distribution-free d has desirable Properties.
This paper outlines:the development of he k-sample extension of the
two-sample Fligner class of tests, bas d upon the generalized PUri

-model. ASsuming rejection of the null hypothesis under test,
.

appropriate post hog-procedures fo-i. the test were developed based on
the,chi-square analogue to the SchelIe theorem. (Author/BW) -

4

1

I

.9/

4.

******************-*********************-****************************,****

Reproductions supplied by EDRS are the best that can be "made. *

from the original document.
***********************************************************************

_



417

A k-Sample Extension
To Fligner's Class
Of Tess For Scale

Stephen L. Koffler
N.J. State Department of Education

r

U.S. DEPARTMENT OF EDUCATION
NATIONAL INSTITUTE OF EDUCATION

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC!

Thrs document has been reproduced as
reCervV., frdm the person or organization
originating it

.Minor changes have been made to improve
reproduction quality

Points of view or opinions stated in this docu
meet do not necessarily represent official NIE
posIhon or policy

The parametric tests for equality,of variance are well known. The

classical F-test is typically used to test the hypothesis of equality of

two variances while tests developed by Bartlett(1937), CoChran(1941) and

Hartley(1950) are probably the most commonly used for the k-sample hypothe-

sis. These tests assume an underlying normal distributj.on and are quite sen-

sitiie to departures from normality (see Box(1953), for example).' Thus, when

considering data that are from non-normal distributions, alternative non-

parametric
/
tests must be employed.

Fligner(1979) has proposed a class of two - sample distribution-free tests

which possesses very desirable'Properties and is an attractive alternative

4
to other nonparametric tests for,scale. The present paper extends the Fligner

class of tests tb the more general k-sample case. For this general case

when the null hypothesis is rejected:it is necessary to ap yspost hoc

.

multiple Comparison procedures to determine specific popula2ton differences.

Thus, this paper will also consider an appropriate'post hoc procedure for

the k-sample class.

Notation J
LeXtilbkindependentrandomsaraples(Xii,i. = 1, ... , n.; j = 1, ... , k)

. , .., 3

origiriate from k populations with absolutely continuous cumulative distribution

functions F1, , Fk, respectively. Let Fj(X) = F(05 (X - vi)), where

03 .(8.>0)andu.are the scale and location parameter respectively, for
3
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F.(X). Further, .let thefollpwing quantities be defined:

I.-Qv ... , QN denote the order statistics of the combined sample
.4

oftheN(N=En.)observations;
J

= yQ1, ...,,*QN),-j = 1, ... , k, are measurable functions of

(the order st tisticsrom the combined samples;

3. Vij = h(X-11..,... I(.) i = 1, ... nj, j = 1, ... , k, where

theord-Yrequirementmhisthatthelrij 's be measurable;

4.11m' m=1,...,N,istherenkofVin the combined sample of
ij

N V. 's.
lj

5.ZP) is an indicator variable such that ZP) = 1 if the ith smallest

observation is from the jth population, and 0, otherwise.

The null hypothesis of interest is Ho: el = . . = e
k'

v
1

= . =uk'

while the alternative hypothesis is HI: e, < 04; vi = = yk, for some

pair,(i,j)! The hypothesis is stated in terms of the scale parameter since

the varia ces do not always exist. Furthermore, attention is restricted

to situa ops suchjhat F(0) = and F(') is increasing in some neighbor-
+.

hoodaboutzero;thtis,thev.'s are the unique population medians (Fligner,1979).2

Fligner's Two Sample Class of Tests

Prior to developing the k- -sample extension to Fligner's class,of ,

statistics, it is necessary to illustrate the two-sample case.

1 When testing hypotheses about the scale parameters, the appropriateness of
`many nonparametric procedures depends upon the assumptions made regarding
the location parameter. Many -ofilthe usual nonparametric tests make-the
assumption of equality of the population medians.(Fligner,1979).Thi'S requirement
assures-the consistency of the statistics '(Fligner & killeen, 1976).

2There are two general types of,alternative hypotheses for nonparametric
statistics--the first type of alternative is asymmetric one (with
common median). It is this type of alternative for which tilt usual non-
parametric tests are most appropriate. However, those usual tests can be
used when the alternatives are asymmetric, so -long as F(0) = 1/2. Nonparametric

statistics proposed for alternatives having common median are generally
very inefficient for alternatives with mass tonfined to the positive-axis
since F(0) = 0 in this case and the assumption of common median is violated:
Thus., a second general type ofIscale alternative carries the assumption
F(0) = F.(0) = 0, 1, , k., For these alternatives a shift in scale

forbapses a change in location parameter. Duran(1976) considers tests
for scale for both conditions. 3
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F1igner's(1979) class of distr ibution-file statistics assumes the
*

location parameters are espal. Let Mp = Mp (X
11'

. : . , X
n11

,X
12

,
. , Xn22 )

-

be the pthcomp,i4d.sample quantile: 0 < p < 1.3 Further,____

r = Np O.< p z wand Np a positive integer (1) .

.

=, (Np 11' p= or Np not a pdsitive integer,

N
, . where {} denotes the greatest integer function.

.

. I . e
jefine MI) - 9,r ,nd,m,_p = C,/,.1..,r for 0 < p < 1/27 Vheri-p =41,

, b

0
.

mh Q(.1,1+1)/2 for IN odd and M1/2 7- (
-11/2 + Q(N/2)471)/2

for N even. This com-

pletely defines the pth combined sample ,opiantile for .0'k p < 1.

. -IP
When 0 < p < 1/2, let Vii = h(Xij,N01/4,Mi_p) be defined as follows:

I

Vii x.. - X.. < M (2)13 13 p 13 P

m,11 m < x.1. < m,
1p 3 -p

X. - M X M
?-j. 2

.

-P f-P-

+Max(,(Mi_p - Mp)),

The statistic .-

where

(It
=

TN,P i=1 N' ij

aNcp(i),

.

n1

E aN (Ri)

i=1 'P
(3)-

, N, is any vector Of scores, is distribution-free

.

under Ho; e ='Ef
2'

= v
2

(Fligner, J9791.

3 The symmetry required in Fligoeri's definition ,of M and M
1-p

i .not present

in the definitiOn of. the sample quantiles in many texts (e.g., Gibbons, 197 1,
p. 41).

4
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For 0 < p < 11 and r given a ove, Fligner defines his class of

4

statistics, denoted by 11 = ( TN,p: 0 < p < 11), by using the following scores:

aNp(i) = 2i i even and 1 < i < r (4)

= 2i-1 i odd and 1 < i <r

= N-i+r r < i < N+1-r

= 2(N - i)+2 i even and N+1-r < i < N

= 2(N - i)+1 i odd and N+1-r < i <N

when Nis even, and

aNp(i) = 2i i even and 1 < i < r .(5)

= 2i-1 i odd and 1 < i < r

= i..N-i+r
.

_

r <.i < N4-1-r

2(N - i)+1 i even and N+1-r < i < N

= 21(N - i)+2 i odd and N+1-r < i < N

when N is odd.

A series of examples will best illustrate the Fligner class. First,

it can easily be shown that the statistic TN:1/2 is the Siegel:TUkey(1960)

4

statistic. The following example was'reported in Penfield(1972).

Example I

An experimenter wishes to determine whether a special training program

will influence the abstracteasoning scores of nine year old mentally retarded

females. To test his theories he selects 12 (all that were available) nine
0

4
The Siegel-Tukey test replaces the combined samples' data with a reordering
oftherallks(basedontheorighlaldata,'notthel.,..). To illustrate the

3.1
ranking procedure, consider the following chart (N is assumed to be an even number).

Ordered Score:
Q1 %Q2-, Q3 Q4 QN/2 QN-3 QN-2 QN-1

Siegel-Tukey Ranks -1 --4--) S 8 ... N .. 7 6 3

5



year old girls whO.have IQ scores recorded between 65 and 75 on the Stanford

Binet. He randomly assigns six of the children to the experimental condition

and six to the COnt;p1. After training the experimental group for amonth,

the experimenter then gives both groups an abstract reasoning test. He

believes that the scores of the group receiving special training wil l have

-greater dispersion than those of the control group. Is he justified in

making this conjecture ( a = 0.05)7

For Ois.example nl = n2, 6 and N = 12. From equatio (

r = {(12)11. + 1} = 7. The original data, the Vij, Rm, and aN,I1(Rm)4are

presentedin the table below. Applying equation (2),
3

V..
13

= X1.. - MI.., for

all Xij, where M1/2 = (Q6 + Q7)/2 = 24. Further, equation (4) is used to

determine the scores at,
1 m
(R_) since N is even.

11,

TABLE 1

Pertinent Data For Analysis

Of Example I Based,Upon

-_,Expierimental-

X..
,-

R
m

. 19

.21

-5

-3

-

3

27. 3 4

30 6 10

31 7 11

35 11 12

Control

,aN,1/2(k)
m

X..
13 1

V.3 : R
m aN,i(Rt)

20

22

-4

-2

2

4

4

8'

23 -1 5 9

23 -1 6 12

25 . 1 7 11

26 2 8 10

E= 54

7

6

_3 -

2

= 24

0
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Thus, T
12,1/2

E a
12,

1

1
(R.)Z

i

1) = 24,

.

It should be clear that the a
12,1

2

i
(R)

i1
given by equation (4) are the Siegel-Tukey ranks deriVed according to

12

footnote 4. Further, since the Siegel-Tukey statistic is T
ST

= E R. ZP)
.

- i=1 i
1

where R .are the Siegel-Tukey ranks, T12:11 = TST. It can be also easily

shown that T
N 11

T
ST

for N odd.

The other extreme member of the Flignex class,TN0, is a linear
N

functionofthestatisticTN=ER.Z.(1) ,whereR.are the ranks of
i=1 .1 1

V.. = IX.. - 1.1,11 for all Xi
13 13 .

To determine T
N 0'

r = (N.0 + 11 = 1, since Np = 0. From equation (2)

Vii=1X.j -C1 forallX.j .1'hus, the V.- for T
N j

are'equal to IV. 1

i

forTN,11 .
For illUstrative purposes suppose N is even (the same develop-

.

ment holds for N odd). hen prom equation (4) a-
N (1

0

Thus,

N . 2N

T
N,0 = E aN 0(Ri)Zi

1)
= E (N"- Ris.+ 1)ZP)

i=1 ' i=1

= N - i + 1, for all i.

ni(N + 1) - E R. Z.
(1)

1

= ,sni(N + 1) .2"TN

(5).

Examining Table 1 and recomputing the values of R
m
corresponding to IVj I, '

12

R.Z
1)

= 9+7+6+10+11+12 = 556 Thus, TN_ = 6(12 + 1) - 55
/

It now remains to consider the non - extreme members of the-Fligner class.

When 0 < p < 1/2, the7iector of scores
aN p

(i) agrees with those' used in

computing TN for i and i > N - r + 1 from equation (4) or (5). These

S T
N

was proposed by Fligner and Killeen(1976) and is an' appealing statistic

if the populations are symmetric. gee the.Fligner and Killeen(1976) article
for a complete description of T

N .

6
It is assumed that the probability of ties is zero. However, some of the E's
and h functions create ties in the combined sample of Vi.'s. If the method
for breaking the ties does not distinguish between the 3samples, any statistic,
based on the ranks of the V.. will be Istributioniree wh9 Fi(X) = F2(X).
iFliee5,11979).Th r,thiedWoIs ihetEigto tee

e eft. tiesmonitfielEme side of the
mealariewerrtroian gaseanon a ranaom approaah.
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. scores are applied to the outer 2(r-1) observations, that is, those less

than M or greater than M . - ,

r-1
1 p

NP
(1)

Let Tl. = Z a_ 1 (R)Z. + E aN ,I,(R.)Z
1)

, the sums of theN,p N,I i i i i
i=N-r+2 ' "

outer scores for the-first sample observations. Then for qe remaining

N-2(r-l)obiervations,R4istherankofV.=1X.-M1/21 for
ij

4
M < X. < M rim equation .(4) or (5). Ap ij 1-p .

N-r+1 N-2(r-1)
Thus,1

i
10=Z(N-i+ Z (N - i + 1)Z.(i) , Which is

'' i=r 1=1
i

`), equivalent to theportion of the statistic TN0 corresponding to the central
,

N , 2(r-1) observations (from equation (4)). TN,p = T1 + T&p:\Therefore,

TN,p is computed by perfotming the Siegel-Ttkey statistic (TN 11) on the outer

observations and T
N 0

on the inner ones. T can be considered a compromiseTN

between T and T
N11. N,O.

To illustrate T
N,p ,consider Example I and suppose the interest is in

determining the value of T 1. Since p = 1/4, r = 12.1/4.= 3 from equation (1).
N,1/4

Further, M/- = Q3 = 21 and M
1 1/4 '`10

30. Applying 'equation (24,
. 4

V.. = X.. - 21 Xij < 21 (6)

= 1X.. - 241
,

21 < X. < 30.1J
X.. - 24 X: > 30
ij ij

From equation (4), since N is even,

aN,4(i)
i even and 1 < i < 3, (7).

-1 i odd and 1< 1< 3

= -12-i+3
.fr

3 < i < 10

2(12-i)+2_ i even and 10 < i < 12

= 2(12-i)+1 i odd and 10 < i < 12

A
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Table 2 outlines the relationship among the original data from Example I,

the V.. R and a (R ).
13' m 12,4 m

) TABLE 2

Pertinent Data For Analysis

,Clf Example I Based UpoV n TNT

Experimental
I1

- 13
X1..

3
V.. Rm aN,4(Rm)

Contxol

VX.- .. R
3.3

aN,4(Rm)

19 -2, 1 1

21 3 9 6
, .

27 3 - 8 7

30 6 10 5

31 7 11 3

35 11 12 ' 2
p

E. 24.

20 -1 2

22 2 7

23 1 4

23 1 5

25 1 3

26 2 6 §

z L 54

- 4

8

11

10

12

I

Examining the a124(Rm), it is evident that for Rm < 3,and Rm > 10,

the a 124 (R
m
) are identical to the Siegel-Tulcey values. For 3 < R

m
< 10,

the values of a12 ,(Rm) = N + 1 -Rm , where R
m

= R
m

- (r - 1) (see the dis-

cussion of TN for the rationale of this translation).From Table 2

12
(1)

(R%)Z. = 24 :T
12,4 i1 '

Fligner(1979) noted that for each Ague of p, the vector of scores

(aN,p(1), aN,p(2), , aN,p(N)) is a =arrangement of the integers , N.

Applying a theorem by Fligner, Killeen and Hogg(11976), TN has the same

distribution, under Ho, as the two sample WilcoxQn(1945) statistic, regardless

111
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of p.7 Thus, H
o

(Iis rejected at level whenever T
1

< C (a), where
.N,2 nn

C
nl'n2

la) is the lower ath _percentile of the two sa,..ple Wilcoxon null distribution.
_

--

In Example 1-C66(.05) = 28. Therefore, the null hypothesis of equality
,

of the 'scale paraMeters would have been rejected,based on all three

statistics T
N,0'

T
N,111'

and T . / 4

itN,h , .
,

Clearly, had other valuesof ,p been selected, the null hypothesis may not

have been rejected. Thus, one must dbtermine the conditions under'which each

member of the Fligner class of statistics should be used. Since there are

many alternatives, one. should select the particular T. which will provide
N,p_,

he most powerful test, given the constraints imposed as a result of the.

shape of the distribution of the underlying population of scores. Thus,

F(X) must be known '`to select the appropriate test.

It is infrequent that F(X) is known. For unknown distributions one may
U

use adaptive procedures to discern the nature of the underlying F(X) from the

sample data. Adaptive procedures'are technique's whiCh use thesample data
A

to select an appropriate model (i.e,, inthis case the appropriate value of

p) and then to make an inference based on'the chosen model.

Fligner(1979) used the procedures of Randles and Hogg(197(3) and Hogg,

Fisher and Randles(1975) to determine an adaptive test that was distribution-
,

free when the a4sumutionS of equal medians was satisfied and was relatively
/

insensitive to small failures in that assumption. An adaptive test is

distribution-free when the preliminary selection of the model is statistically

independent of the final test.

Lehmann(1975) provides a dptailed'description of the two sample Wilcoxon
statistic.
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Fligner(1979) used a Monte. Carlo study to investigate the behavior of

. .

the test procedures and tben used-those results to obtain the method for

selecting a statistic T
N,p

. He.based the selection on the tailweight of

the distribution Let Q be defined as follows: a

Q = ,(Q- Q1)/(2 lqi M1/21/N) for N < 20 (8)

10(U.05 L.05".50 1%50)
for N. > 20

where US(LS) is the sum of the largest (smallest) Na order statistics with

fractioni items being used when Na is not an integer.
\,,

o Fligner(197g) asserted that if the statistic Q.classifies the distribu-

tion as heavy tailed, the test is to be based on T
N1/2

for medium tail

weights, TN while for lighter tailed distributions, TN,0. Smaller values

of Q signify lighter tails. Fligner defined the following selection procedure:

Whenever Q < 2.6, base the test .orf T
, N0'

Whenever 2.6 < Q < 3.5, base the test on TN,1,;

Whenever Q > 3:5, base the test on
N,2

(9)

Examining the data from example I to determine, the appropriate test.

statistic, we obtain,the.following:
4'
,"

..

Q = (35 - 19)/(2;46/12) = 16/7.667 2.09 (10)

Hence, from equationj(9), the: appropriate test statistic to use forsthose

data is 7N0.

All members of the Faignez two sample classof staXisticg;.with the

/ 4
exception of the Siegel-Tukey equivalent .(TN:i1) cannoX be computed from the

(



ranks of the original data alone. Thils, they are not rank statistics. HOwever,

they are distribution-free under the null hypothesis.(Fliglier, 1979) The

chief differerice ampg the class members is the manner in which each T
N,p

uses

tine dispersion informdtion present in the sagyle data. As Fligner(1979) motes,

each observation's dispersion information can be viewed in terms of the obser-
.

vationq distance from some centrar value or from Where it fallt in the

ordering of the samples.

Finally, Fligner(1979) also showed that for any pl and p2, 0 < pl,p2 < 1,

when tes g the null hypothesis, the exact Bahadur(1967) efficiency. of the

*lest based on T
N,p relative to the. test based on T

N ,p
is one when the populations

are symmetric. Fligner noted that the Bahadur efficiency result suggests that

for moderate sample sizes, under the assumptions of the null hypothesis, the

power properties of the various members of the class should be similar.

.k-sample Extension To Fligner's Class

iBecause of the broad range of use for thej iligner class, it is desirable to

extend it to the more general, and probably more frequently occurringork sample

problem. Puri(1964) has developed a generalized k sample testing procedure for

considering this problem. Previously, Penfield and Koffler(1979) have derived and

compared the k sample analogues to the two sample Mood(1954); Siegel-Tukey(199t

and klotz(1962) tests based on Puri's methods.

Puri's statistic is defined as folloWs:

where

'A k

Z n.(S . p .)
2
/A

2

N,3

N

S = 1 Z E .Zci)* N,j
n. i =1 No.

3

It

04- 1") '

(12)

x.
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,Il and A, are nor l'i,iing constants ht iiccnottdepend on ,j and are equiya.
. 7.

j - . %,_ ,x.0,44,

,
2.:.:,x.t.:,,,,, . -. ..: '4::;, . ,- .

lent to E0 0) andq(8- 1H0), resPeCtiKIjr, &Nj ...,
_

,,.. , '''-r. ..
,

,
.

ENi s a variable which .'11,tmits the suitti tion of'avariety of:Statistical
, ..-, woqs, . :::cl.

= i ,4.64v*spOnds to the Siegel-Itukey'sta,ti,
-6!,,,, . - t 'tZ` 11, 1, 1. -,,,, ' EN,i,.,,,

4,41-'4 . ..-:, . ,---,,
-,.

to the Mood test,and E, .=.4
1

(i/N+1))
2
'where (1).is the..4tan, nOrmal

..

"4417,
Ni 1

p,
1 '..

t

A.

12,

,cumulative disribution fundtion, to Kl2i'stest......,Puri{06-81 "SIOwed_that

.(i- M+1/2)
2

A
.,, -01"6,

ev_ation-{11T-ii-isymptotically distributio&free alen'each sampfs adjusted
t

for its sample median, provided the populations are symteeic. Using theorems
i..

'

)
iomp*noff and Savage(1958),Furi(196t)showedthat the limitiniistribUtion

4

f .(11) is x2 with k-1 degrees of freedom, centralMder 110 and noncentral under

2.-
P .

'HI, when'the values of u and A are E S1 1H0) and VarN,jIH0), respectively.

'The values of E /H0),and Var(S 1H0) an be derived from the ritethods(S14,,j

of LehMann(1975):

-4... ,

N . ..

-E-(S fH0) = E N = -f :

- N
.

,J '

ENi/
,N,

i=1

- 114:
Var(SNl Ho) =

N n.
-'',-1,10- EN :j)2'i

i,

n.N(N-1.) i=1

A

To generalize the Fligner clask.of o sample' statistics to the 0ample

case, E, .40,?is.definedlbrequationg4) or (5) for'N even Or odd, respectively.
11,1

Given the many membefs of Flignerialass (i.e., 0 .4WA,even tr odd,

3fir

13)

(14)

A

with WEerent values of r depending on the relationship of'N
i

p and V), it
tp.

might appear, that the derivation of equations (13') and (14) would be yery

4

cumberiome and complex. This is n81!-- so.

AS.Fligner(1979).has noted, for each value of p (regardless of whether N

is even or odd), the vector of scores am (1); t.. , a, (N) is just a
,
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13

.

rearrangement of the integers (1, ... ,N). Thus, itshbuld be clear that-one

could determine i(SN,11H0) 'and Var(S
N,i

Iiio) as follows (Lehmann:,1975):

N " =,

1/ti - N(N4-1) = N+1 '0.5).
4=1 i=1

2N 2

Var(S
N,j

!Ho) =
-

N
N - n.

i 1

(E

N'

- E .)2

= 1141
n.N(N-1)

N - n.
N

El -N (N+1.)
2

n.N(N-1)
1=1

4
3 4

1:21_('N(N+1)(2N+1) - N(N+1)
2

}

n.N(N -1) 6 4

.=. (N- nj )(N +1)

12n.

Tus, given equations (11), 95) and (16), the form of the k-sample

Fligner test can be represented as

k N

n(ZaN (R.)Z j) /n -(N 4' 1))
2

j=1
j

1=1 '

p 1 1
2

(N - n.)(N + 1)/12n.

which simplifies to tize foirbwing:

vo

L = 12 E (a,,,,F (ROZt
())

n.(N+1))
2
/(N - n.)

) 2 (N+1) j1

4k (41

= T4J n.(N+1))
2
7(N - n.)

(N +1) j =1 2

where Tip is the value of T
N,p

for the jth sample.
N, 1 4

J. 4

(17)

(18)
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Equatiln (18) is appropriate regardless of the value of p. Further, Ho is

rejected if L > X2 (1...a).

A-1,
It is instructive to illustrate the k-sample Fligner test with an example.

We shall simultaneduily examine T T and T
N0' N,1/4 N.,11

b

Example II

In a study by Kerst and Levin(1973) imagery and sentence mediators that.

linked the stimuli and reSpohses of pictorial paired associates were either pro-

vided by an experimenter ot ienerated by fourth and fifth-grade students. Sub-

jects were randomly assigned to conditAns. The four strategy conditions under

study were as follows:

1. subject-generated (sentence)

2. subject-generated (imagery)

3. experimenter-provided (sentence)

4. experimenter-provided (imagery)

L

Scores represent the number of correct responses to 20 paired - associate

learning items. The experimenters note that although the four strategy conditions

did not differ among themselves with. respect to central tendency, an examination

of the variances using a parametric test showed them to be significantly different.

e data suggest that the variances of the two experimenter-provided conditions

'Y

were substantially less than those of the two subject-generated conditions.

To analyze the data using Fligner's k-sample ,statistic, a sample of ten scores

from each condition was selected for illustrative purposes. These data and the

V Rk and aNp(Rk) correspinding to TN TN and 1%, , are listed in Table 3.

Append xA contains the necessary information fOr the derivation of the figures

in Table 3. 15
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TABLE 3

Pertinent Data For Anal;is of Example II

Based On the k-Sample Extension to T , T and T
N,0 14,1/4 N,12

15

.

Condition

,

)

Score

2

Q
-k-

T
N,0

,

T
N,1/4 .

T
N,1/2

V:
ij

R a
k Nf0

V'
ij

R a
k N,1/4

V
ij

R
k All

et 3 38 3 -4 3 40 5 -9 ,3 5. ,

I 5 4 8 36 5 -3 4' .8 -8 4 8

(n =.10) 5' 5 ''8 37 4 -3 5 9 -8' 5 "'9
1 6 8 .1 35 6 -2 .8 - 16 -7 8 16

6 6, 7 33 8 -2 6 12 -7 6 12

16 A 3 17 24 --3 26 a24 3 28 26

17 35 4, 24 17 4 33 15 4 35 11

17 33 4 22 19 4 31 19 4 33
i

15

19 38 6 29 12 7 38, 6 6 38 6

19 37 6 28 13 7 37 7 6 37 7

E = 111 . E = 121 E = 115

-1 1 12 40 1 -7 1 1 -12 1 1

II 3 2 10 39 2 -5 '2 4 -10 2 4

(n = 10) 6 - 7

'_7

34 7 -2 7 13 - 7 7 13

c.

2
- . 7 9 6 30 11 -1 9 17 --6 9 17

8 10 5 27 14 5? 35 11 - 5 10 20

171 31 14 t20 21 4 29 21 .4 31 19

17 34 A 3 18 4 32 18 4 34 14
o 18 36 5 26 15* 6 36 10 5 36 10 ,

20 39 7 31 10 8 39 3 7, 39 3

20,,, 40 -7 32 9, 8 40 2 7 40 2

E = 108 E = 100 E = 103

9^ 11 4 25 '16 4 34 14 -4 11 21

III 12 15 "1 5 36 1 14 36 -1 15 29 -

(n = 10) 13 21 0 2 39 0 12 38 0 21 39
, 3

13

14

19

22

0

1

1 40

4 37

0

1

10 40

13 37

0

1

19 37

22 38

.

15 25 2 11 30 2 20 30 2 25 32

.15 27 *2 13 28 2 22 28 2 27 27

15 26 12 29 2 21 29 2 26 29

16 30 3 19 22 3 28 22 3 30 22

'17 . 32 4 21 20 4 30 20 4 32 18

E . 297 E = 294 E =292
li

,11.. 12, 2 14 27 2 23 27 -2 12 24

IV 11 11 2 15 26 2 24 26 -2 13 25

(n = la) 11 14 1:2 16 25 '2 25 25 -2 14 28
4

12 17 1 7 34 1 16 34 -1 17 33

12 16 1 6 35 1 15 35 -1
,

16 32

12 18 '1 8 33 1 -, 17 -33 -1 18 36 ,

13 20 -0 3 38 0 , 11 39 0 20 40
: -

15. 24 2 10 31 2 19 31 2 24 34

15 .23 2 9 32 2 18 32 2 23 35
16 29 "3 18 23 3 27 23 3 29 23

-
p', -.

E = 304
1 rb
. E = 305 E = 310

A
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Ties- among the data were broken as follows: ties tp the right of the combined

sample median were 'assigned lower rinks than those t6 the left; ties on the

same side of the median were broken based on a random approach.
-/

From equation (18) the following values for L were determined:

Ln = 12 {,-(fil 10.41)2 + (108 - 205)2 + (297 - 205)2 +,(304 - 205)2}LO

41 2 '30 '30 30

30

= 356.20

L = 12 ( (121-205)
2.

+ (100 - 205)
2

+ (294 - 205;
2
+ (305 - 205)

2
}

I

41-30.

= 351.24
,

L, = 12 ( (115 - 205)
2

+ (103 - 205)
2

(292 - 205)
2

+ (310 205)2}

1 44.30

= 361.93

The null-hypothesis was one of no difference'in scale among the four

at

typeS of leafing strategies. For a = .05, H
o

is rejected if L > x2(1-a)= X233 (.95) =7.81.

k-1

Thus, regardless of whether one uses T T , or T , the null hypothesis
N,0' N,11

is rejected,

Similar to the two sample case,.the question now arises as to which mem-

ber.of the Fligner class is most appropriate for different situations. Puri(1964)

noted that in general, the efficiency of the L statistic based upon k- samples

agrees with the efficiency of the two sample test statistic. Using that infor-
.

mation,*one couldargue that the adaptive procedure derived by Fligner(1979)

for the two sample problem could be applied to the k-same ca§e.8

° At this point it is conjecture that the two sample adaptive test could be
extended to the k-sample case. A Monte Carlo study, siFilar to the one con-
ducted by Tligner(1979),would provide valuable information in this regard.



C

17

Usingicrati4z (8),

U 05
= Q40 + Q

39
20 + 20 40 (since .05N 2);

.

L = Q +Q = 1 + 3 =4;
.05 1 2

40
Ur . E Q. = 331;
.50 i=41 1

L =
20

Q. = 167;
.50 i1,1 1

Q. = 10(40 - 4)/(331 r 167) 4= x.195.

From equation (9) since Q = 2.195 < 2.6, the appropriate test is based on

TN,

'Post Hoc Procedures

When considering k > 2 samples, it is not sufficient to simply reject

the null hypothesis of equality of the k Scale parameters. Should this hy-

pothesis be rejected, it is necessary to determine the specific reasons for

the rejection (i.e., to determine which of the 8.'s are significantly dif-
J

ferent).

The use of a posteriori or post hoc procedures can be used foi* such

determination. Significant differences among the scale values of the res-

pective populations are determined by using post hoc procedures for testing

meaningfulcOntrastsofthe8.'s.

A 9ontrast of the parameters 81, ...
k

is a linear combination of the

.6>
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k

6 's and is defined as T = E c.04 where the c.'s"are known constant coef-
3 j=1 3 ' k .

- ,

ficients, subject to the restriction that E c. = 0. The sample estimate of the

k A
^j=1 3

/
.

population contrast is i/=
j i'
Ec.6 where 6 is the-sample estimate of the scale
=13

parameter 6. Furthermore, the variance of `Y 'for independent,random samples is

given by the ipllowing:

k A

= Var(T) = Var(E c.e.)
j=1

k k k A A

E c.Var(6.) + E E c.c.,Cov(6. 6. ) (19)

j=1 3 J . j=1 j'=1 3 3
3' 3'

Yit

^.. ,

When 0. is defined according to equation (12), cr,t.is derived as follows:

4

k .2 N k k k

a^ = E c.(N.- n.) E (E . -E .)2 + Z E -c c E (E ir )2
j jl . N i L'N,ifT j-1 3

j . N 1 N,1
1-1 ' j=1 j'-1 1=1 .'

n.N(N-1) j#P N(N-1)
J

(20)

k k k k k

Since E c. = 0, it follows that ( E c.) = E c. +. E E c.c., = 0.
j=1 3 j=1 3 j=1 3 .,j=1 j'=1 3 3'

Yi '
k k k

Hence, E c. = - E E c.c. . Substituting this information into equation (2.0)

j=1 j j=1 j'=1 3 3'

. Yi '

and simplifying, we obtain the following:

k N

(5,2

= 1 E c. E

-2-

(EN,i

j=1 i=1N - 1 n.

S

(21)
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Scheffe(1953) has proposed a method based upon the F distribution for

testing contrasts. Scheffe's theorem states that in the limit the probability

is 1-a that the values of all contrasts (T) will simultaneously satisfy the

inequality S

A A

T - Sa, < 'F < T , where S = (k-1)(Fk_1,N_k(1-a)) (22)
T

Gold(1963); Goodman(1964) and Marascuilo(1966) have extended Scheffe's

simultaneous confidence interval method to encompass the X2 distribution in-
.

stead of the F distribution.9 The analogue'states that in the limit the

k.
probability is 1-a that all linear contrasts of the form T\=

J'
c.O.

. 3 3

simultaneously satisfy the inequality given by equation (2R) where S = (x2(1-a))1/2

k-1

If the overall null hypothesis is rejected, thel is atleast one

contrast ('F) that is significantly different from zero. Equation (22) can be

used to determine the significant contrasts. If the confidence interval does not

contain the value zero,.one would reject the null hypothesis Ho: T = 0 in

favor of HI: T 0..

For the Puri generalized k sample statistic, the form of the confidence

interval is given by the following:

114. - (x2.*.'"*(1-a)Var( c;.%/,j))
j=1 3 ").1 k-1 j=1 J

<
3-1

c.S
N,j 1

X2 (1-a)Var(
j1 3

C.S

N'3
(23)

3 k-=
9
Marascuilo and McSweeney( 1967) present a proof of the X2 analogue to
Scheffe's theorem.
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fi

k

IFor the Fligner procedure, equation (23) becomes the following:

Ec.T(JJ
)

- (x2 (1-a)N-(N+1)1 E c)1 '

< c T(j)
j=1 j N,p k-1 12 3=1 ) j=1 j N,p

n n n.

k 2

(X2 (1-c)tN(N+1)1 c.)2
14-1 12 j=1

n

(24)
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In Example II the null hypothesis of equality of the four scale para-

meters was rejected; thus, it is appropriate to consider post hoc procedures

to determine which conditions were yielding sigiificantly different results.

All six pairwise contrasts and a complex contrast were considered. The complex

contrast examined whether there was a significant difference between conditions

1 and 2 (subject-generated) and 3 and 4(experimenter-generated). Table 4

presents the relevant information,to evaluate the significance of the contrasts.

Table 3

Post- Hoc Procedures for Example II

Contrast
.dow

Estimated,
Contrast('')

Estimated
Variance(c) Upper Limit Lower Limit Decision

T
1

T
2

.

T*
3

T
4 \

T
5

T
6

T
7

S
N,1

- S
N,2

= 0.3

S
N,1

- S
N 3

=-18.6

S - S =-19.3
N,1 N,,4

S
N,2

- S
N 3

=-18.9
,

S - S =-19.6
N,2 N,4

S - S = -0% 7
N,3 N,4

(5N,1 +S
N,2

)/2 -

(S +S )/2=
N,3 N,4 _19.1

-

A

27.3

27.3

27.3

27.3

27.3

27.3

.

13.7

-14.3

-33.2

-33.9
f

-33.5

-34.2

-15.3

-29.4

14.9

-4.0

-4%7

-4.3

-5.0

13.9

-8.8

,

/

-

NS

SIG

SIG

SIG

SIG

NS
...:

SIG
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From Table 4 it can be seen that the subject-generated conditions

(Conditions 1 and 2, Tl) were not siificantly different from each other,

nor were the experimenter-provided ones (Conditions 3 and 4, T6). How-

ever, the significanceof T2,T3,T4, and Ts indicates that each of the sub-

ject-generated conditions was siificantly different from each of the
r

experimenter-provided ones (p; < .05). Furthermore, the average response
5

to the subject-generated conditions was also significantly different from

%

the average response to the experimenter-providediones (T.7). Thus,,one

could 'conclude that the spread in scores was not affected by which of the

two subject-generated conditidns nor which experimenter-provided con-

ditions was used. However, the spread of scores was significantly dif-

ferent depending-Upon alether-a subject or experimenter condition was

used

Summary

Behavioral science data are frequently non-normal. However, too often

researchers rely upon the claisical normal theory parametric tests to

analyze such data even though the tests may not be,robust to violations

of that assumption. Fligners class of tirsample tests for scale'is an
I

important development because the test is distribution-free and has

desirable properties./ ti

Since researchers typically consider more than two samples, it is

equally important to develop similar procedures for the more general

k-sample case. This paper outlined the development of the k-sample exten-
,

sion.to the two-sample Flignei class of tests, based upon the generalized

Puri model. Assumihg rejectio of the null hypothesis under test, appropriate

post hoc procedures foi"the t were developed based on the chi-square

analogue to the Scheff6 theorem.

r)
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APPENDIX A

TN, TN,

1 '10

TN,'

21

1 8 13

20 17 13

V.. 1.Xii - 131 1<X..<20
13 -- 13 X. - 8 X. X.. - 13 1<X..<2013

I Xii - 131 8 < X.. < 17
13 is.

X. - .12- 17>X..
13

aN,p(1)
1

ti 41 - i 1<i<40 2i i .Qven '1<i<10 2i i even I<i<21

2i-1 i odd 1<i<10 21-1 i odd 1<i<21

0-i '10<i<31 2(40-1)+2 i even 20<i<40

2(40-i)+2 i even 31<i<40 2(40-i)+1 i odd 26<i<40

2(40-i)+1 i odd 31<i<40
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